
HG/T 20570.8-1995 Gas-liquid separator design
time:
2024-08-14 08:50:51
- HG/T 20570.8-1995
- in force
Standard ID:
HG/T 20570.8-1995
Standard Name:
Gas-liquid separator design
Chinese Name:
气--液分离器设计
Standard category:
Chemical industry standards (HG)
-
Date of Release:
1996-05-02 -
Date of Implementation:
1996-03-01
Standard ICS number:
71.010China Standard Classification Number:
>>>>P7 Chemical Industry>>Comprehensive Chemical Industry>>G04 Basic Standards and General Methods

Skip to download
Summary:
HG/T 20570.8-1995 Gas-Liquid Separator Design HG/T20570.8-1995 Standard download decompression password: www.bzxz.net

Some standard content:
Gas-liquid separator design
HG/T20570.8—95
Compiled by: China Huanqiu Chemical Engineering Corporation Approved by: Ministry of Chemical Industry
Effective date: September 1, 1996 Prepared by:
Wang Wen, China Huanqiu Chemical Engineering Corporation
Reviewed by:
Wang Qingyu, China Huanqiu Chemical Engineering Corporation
Sheng Qingping, Process System Design Technology Center, Ministry of Chemical Industry
Gong Renwei
1 Explanation
1.0.1 This regulation applies to the design of two types of gas-liquid separators: vertical and horizontal gravity separator design and vertical and horizontal wire mesh separator design.
Vertical and horizontal gravity separator design
2.1 Scope of application
2.1.1 Gravity separators are suitable for gas-liquid separation with droplet diameters greater than 200um. 2.1.2 To improve separation efficiency, valves, feed materials and material diversion should be avoided directly in front of the gravity separator.
2.1.3 If the amount of liquid is large and the residence time between the high and low liquid levels is 6 to 9 minutes, a horizontal gravity separator should be used.
2.1.4 If the amount of liquid is small and the liquid level is not determined by the residence time but is limited by the minimum distance of 100mm between each adjustment point, a vertical gravity separator should be used. 2.2 Dimensional design of vertical gravity separator
2.2.1 Gas velocity in separatorbzxz.net
2.2.1.1 Approximate estimation method
V,=K,(=P)0.5
-Floating (settling) velocity, m/s;
PL, PG
Liquid density and gas density, kg/m3
-Coefficient
When d*=200μm, K0.0512;
When d*=350μm, K. =0.0675.
(2.2.1-1)
The approximate estimation method is based on the material flow process in the separator, assuming Re=130, and the corresponding resistance coefficient C=1 is obtained from Figure 2.5.1-1. This coefficient is included in K, and the coefficient K. is selected according to formula (2.2.1-1). Calculate the floating (settling) velocity (V.) by formula (2.2.1-1), and then set a gas velocity (ue), which is the gas velocity in the separator, but the ue value should be less than Vt.
The actual material flow state may be greatly different from the assumed value, which will cause inaccurate calculation results. Therefore, the approximate estimation method can only be used for preliminary calculations. 300
2.2.1.2 Accurate algorithm
From the equilibrium condition of the floating droplet, it can be concluded that: V,=[4gd*(pt-Pc)
V.-floating (settling) velocity, m/s
d*——droplet diameter, m;
L, Pc—liquid density and gas density, kg/m; g—gravitational acceleration, 9.81m/s;
Cw——drag coefficient.
(2.2.1-2)
First, find Cw from Figure 2.5.1-1 based on the assumed Re number, then calculate V from the required floating droplet diameter (d) and pL, Pc according to formula (2.2.1-2), and then calculate Re from this V. dV.pg
Gas viscosity, Pa·s
The rest of the symbols have the same meanings as before.
(2.2.1-3)
Get the Re number by calculation, check Figure 2.5.1-1, find the new Cw, substitute it into formula (2.2.1-2), and calculate repeatedly until the Re numbers selected twice are equal, that is, V=V. Take u
Tip: This standard content only shows part of the intercepted content of the complete standard. If you need the complete standard, please go to the top to download the complete standard document for free.
HG/T20570.8—95
Compiled by: China Huanqiu Chemical Engineering Corporation Approved by: Ministry of Chemical Industry
Effective date: September 1, 1996 Prepared by:
Wang Wen, China Huanqiu Chemical Engineering Corporation
Reviewed by:
Wang Qingyu, China Huanqiu Chemical Engineering Corporation
Sheng Qingping, Process System Design Technology Center, Ministry of Chemical Industry
Gong Renwei
1 Explanation
1.0.1 This regulation applies to the design of two types of gas-liquid separators: vertical and horizontal gravity separator design and vertical and horizontal wire mesh separator design.
Vertical and horizontal gravity separator design
2.1 Scope of application
2.1.1 Gravity separators are suitable for gas-liquid separation with droplet diameters greater than 200um. 2.1.2 To improve separation efficiency, valves, feed materials and material diversion should be avoided directly in front of the gravity separator.
2.1.3 If the amount of liquid is large and the residence time between the high and low liquid levels is 6 to 9 minutes, a horizontal gravity separator should be used.
2.1.4 If the amount of liquid is small and the liquid level is not determined by the residence time but is limited by the minimum distance of 100mm between each adjustment point, a vertical gravity separator should be used. 2.2 Dimensional design of vertical gravity separator
2.2.1 Gas velocity in separatorbzxz.net
2.2.1.1 Approximate estimation method
V,=K,(=P)0.5
-Floating (settling) velocity, m/s;
PL, PG
Liquid density and gas density, kg/m3
-Coefficient
When d*=200μm, K0.0512;
When d*=350μm, K. =0.0675.
(2.2.1-1)
The approximate estimation method is based on the material flow process in the separator, assuming Re=130, and the corresponding resistance coefficient C=1 is obtained from Figure 2.5.1-1. This coefficient is included in K, and the coefficient K. is selected according to formula (2.2.1-1). Calculate the floating (settling) velocity (V.) by formula (2.2.1-1), and then set a gas velocity (ue), which is the gas velocity in the separator, but the ue value should be less than Vt.
The actual material flow state may be greatly different from the assumed value, which will cause inaccurate calculation results. Therefore, the approximate estimation method can only be used for preliminary calculations. 300
2.2.1.2 Accurate algorithm
From the equilibrium condition of the floating droplet, it can be concluded that: V,=[4gd*(pt-Pc)
V.-floating (settling) velocity, m/s
d*——droplet diameter, m;
L, Pc—liquid density and gas density, kg/m; g—gravitational acceleration, 9.81m/s;
Cw——drag coefficient.
(2.2.1-2)
First, find Cw from Figure 2.5.1-1 based on the assumed Re number, then calculate V from the required floating droplet diameter (d) and pL, Pc according to formula (2.2.1-2), and then calculate Re from this V. dV.pg
Gas viscosity, Pa·s
The rest of the symbols have the same meanings as before.
(2.2.1-3)
Get the Re number by calculation, check Figure 2.5.1-1, find the new Cw, substitute it into formula (2.2.1-2), and calculate repeatedly until the Re numbers selected twice are equal, that is, V=V. Take u
Tip: This standard content only shows part of the intercepted content of the complete standard. If you need the complete standard, please go to the top to download the complete standard document for free.
- Recommended standards
- GB/T 11349.2-1989 Test determination of mechanical sodium conduction - Single-point excitation measurement using an exciter
- GBJ 201-1983 Code for construction and acceptance of earthwork and blasting engineering GBJ201-83
- GB 50159-1992 Specification for suspended sediment testing in rivers
- JB/T 8338-1996 Ordinary abrasives - ball-based grinding wheels for grinding bearings
- JB/T 10281-2001 Technical requirements for fire smoke exhaust fans
- GB 2097-1997 Color television broadcast test chart
- QX/T 10.3-2019 Surge protective devices—Part 3:Selection and application principles of surge protective devices connected to signaling networks of electronic systems
- GB 15208-1994 Microdose X-ray safety inspection equipment
- JB/T 7384.6-1994 Hexagon socket width through gauge for fasteners
- GB/T 3098.13-1996 Mechanical properties of fasteners - Torque test and breaking torque of bolts and screws - Nominal diameter 1?10mm
- JB/T 6209-1999 电动刀锯
- GB 16358-1996 Standard for radiation health protection for unsealed radioactive sources in oil (gas) field well logging
- GB 8172-1987 Agricultural Control Standard for Urban Waste
- JB/T 2858.3-1999 Thread grinding machine accuracy inspection
- GB/T 15151.1-1994 General technical requirements for frequency counters
Please remember: "bzxz.net" is the combination of the first letters of the Chinese pinyin of the four Chinese characters "standard download" and the international top-level domain name ".net". ©2024 Standard download websitewww.bzxz.net Mail:bzxznet@163.com